驅動系統是向機械結構系統提供動力的裝置。根據動力源不同,驅動系統的傳動方式分為液壓式、氣壓式、電氣式和機械式4種。早期的工業機器人采用液壓驅動。由于液壓系統存在泄露、噪聲和低速不穩定等問題,并且功率單元笨重和昂貴,目前只有大型重載機器人、并聯加工機器人和一些特殊應用場合使用液壓驅動的工業機器人。
控制系統的任務是根據機器人的作業指令以及從傳感器反饋回來的信號,支配機器人的執行機構去完成規定的運動和功能。如果機器人不具備信息反饋特征,則為開環控制系統;具備信息反饋特征,則為閉環控制系統。根據控制原理可分為程序控制系統、適應性控制系統和人工智能控制系統。根據控制運動的形式可分為點位控制和連續軌跡控制。
在我國,工業機器人廣泛應用于制造業,不僅僅應用于汽車制造業,大到航天飛機的生產,軍用裝備,高鐵的開發,小到圓珠筆的生產都有廣泛的應用。并且已經從較為成熟的行業延伸到食品,醫療等領域。由于機器人技術發展迅速,與傳統工業設備相比,不僅產品的價格差距越來越小,而且產品的個性化程度高,因此在一些工藝復雜的產品制造過程中,可以讓工業機器人替代傳統設備,這樣就可以在很大程度上提高經濟效率。
伺服
①快速響應,定位
伺服的響應時間直接影響到機器人的快速起停效果,影響機器人的工作效率和節拍。 [5]
②無傳感器方式實現彈性碰撞
性是衡量機器人性能的一個重要指標。加入力或力矩傳感器會使結構更復雜,成本更高,基于編碼器、電機電流耦合關系的無傳感彈性碰撞技術,可以在不改變本體結構,不增加本體成本的條件下,在一定程度上提高機器人的性。 [5]
③驅動多合一、驅控一體。
驅動多合一,多核CPU多軸驅控一體化集成技術,提高系統性能,降低驅動體積與成本。 [5]
④在線自適應抖振抑制
工業機器人懸臂結構極易在多軸聯動、重載及快速起停時引起抖動。機器人本體剛度要與電機伺服剛度參數相匹配,剛度過高,會造成振動,剛度過低會造成起停反應緩慢。機器人在不同的位置和姿態,以及在不同的工裝負載下剛度都不一樣,很難通過提前設置伺服剛度值能滿足所有工況的需求。在線自適應抖振抑制技術,提出免參數調試的智能控制策略,同時兼顧剛度匹配、抖振抑制的需求,可以抑制機器人末端抖動,提高末端定位精度。

