控制關鍵技術 (1)運動解算及軌跡規劃 運動求解,路徑規劃,提高機器人的運動精度和工作效率。 [5] (2)動力學補償 一般工業機器人是一個串聯懸臂式結構,剛性弱,運動復雜,容易發生變形和抖動,是一個需要運動學和動力學相結合的課題。為了改善機器人的動態性能和提高運動精度,機器人控制系統必須建立動力學模型,進行動力學補償。補償的內容主要包括重力補償、慣量補償、摩擦補償、耦合補償等。 [5] (3)標定補償 機器人機械本體由于加工誤差和裝配誤差的原因,難以避免會和理論數學模型存在偏差,會降低機器人TCP精度和軌跡精度,如在焊接和離線編程使用時會受到嚴重影響。通過檢測和算法標定補償機器人的模型參數,可以較好地解決此問題。 [5] (4)工藝包完善 控制系統要與實際工程應用相結合,系統除不斷升級,功能更加強大外,還要根據行業應用的需求不斷開發和完善工藝包,有利于積累行業工藝經驗,對客戶來說使用更方便,操作更簡單,效率更高。
①輕量化 對機器人來說,電機的尺寸和重量非常敏感,通過高磁性材料優化、一體化優化設計、加工裝配工藝優化等技術的研究,提高伺服電機的效率,減小電機空間尺寸和降低電機重量,是機器人電機的關鍵技術之一。 [5] ②高速 在減速比不能較大調整的情況,電機的轉速則直接影響著機器人的末端速度和工作節拍;而且速比太低會影響電機的慣量匹配,因此提高電機的轉速也是機器人電機的關鍵技術之一。 [5] ③直驅、中空 隨著協作機器人的不斷成熟和推廣,機器人結構的輕量化、緊湊化要求提高,發展高力矩直接驅動電機、盤式中空電機等機器人專用電機也是未來的趨勢。
在我國,工業機器人廣泛應用于制造業,不僅僅應用于汽車制造業,大到航天飛機的生產,軍用裝備,高鐵的開發,小到圓珠筆的生產都有廣泛的應用。并且已經從較為成熟的行業延伸到食品,醫療等領域。由于機器人技術發展迅速,與傳統工業設備相比,不僅產品的價格差距越來越小,而且產品的個性化程度高,因此在一些工藝復雜的產品制造過程中,可以讓工業機器人替代傳統設備,這樣就可以在很大程度上提高經濟效率。
驅動系統是向機械結構系統提供動力的裝置。根據動力源不同,驅動系統的傳動方式分為液壓式、氣壓式、電氣式和機械式4種。早期的工業機器人采用液壓驅動。由于液壓系統存在泄露、噪聲和低速不穩定等問題,并且功率單元笨重和昂貴,目前只有大型重載機器人、并聯加工機器人和一些特殊應用場合使用液壓驅動的工業機器人。

