目前,ITO靶材的制備主要有兩種常見方法:熱壓燒結法和冷等靜壓法。
熱壓燒結法
工藝流程:將氧化銦和氧化錫粉末按比例混合后,放入模具,在高溫(1000-1500°C)和高壓(幾十到幾百兆帕)下壓制成型。高溫使粉末顆粒熔融結合,形成致密的靶材結構。
優點:這種方法制備的靶材密度接近理論值(通常超過99%),晶粒分布均勻,適合高精度鍍膜需求。
缺點:設備復雜,能耗高,生產成本較高。
適用場景:高端電子產品,如智能手機、平板電腦的顯示屏制造。
銦靶材主要由金屬銦制成,具有質軟、延展性好和導電性強的特點。作為稀有金屬,銦在自然界的含量稀少,但其獨特的物理和化學性質使其成為眾多高科技產品的核心組件。銦靶材廣泛應用于航空航天、電子工業等領域,是制造高性能電子元器件的關鍵材料。
銦回收具有重要的環保和經濟效益。通過回收廢舊靶材中的銦,可以減少對新資源的開采,降低環境污染,實現資源的可持續利用。此外,回收銦還能穩定市場供應,降低生產成本,促進相關產業的可持續發展。
技術破局:從粗放走向精純
現代銦回收工藝已形成精細鏈條:
預處理與富集:機械破碎液晶屏 → 高溫焚燒去除有機物 → 酸溶浸出(常用硫酸/鹽酸),將銦等金屬轉入溶液。
深度分離提純(核心技術):
溶劑萃取法:利用特定有機溶劑(如P204)選擇性“捕獲”溶液中的銦離子,實現與鐵、鋅、錫等雜質的深度分離,富集倍數可達千倍。
離子交換法:功能樹脂吸附銦離子,適用于低濃度溶液提純。
電解沉積:對富銦溶液通電,在陰極析出粗銦。
高純精煉:對粗銦進行真空蒸餾、區域熔煉等,去除微量雜質(如鎘、鉛),產出純度高達99.99%(4N)以上的精銦,滿足高端ITO靶材要求。
綠色升級:循環經濟的必由之路
相比開采原生礦(主要來自鋅冶煉副產品),從電子垃圾中回收銦具有顯著優勢:
資源保障:1噸廢棄液晶面板可提取200-300克銦,品位遠超原礦。
節能減排:回收能耗僅為原生銦生產的1/3,大幅降低碳排放。
環境友好:減少電子垃圾填埋污染,避免采礦生態破壞。
經濟可行:銦價高企(曾超1000美元/公斤)賦予回收強勁動力。

